

Dynamics of sting-jet storm "Egon" over continental Europe

Lea Eisenstein¹, Florian Pantillon^{1,2}, and Peter Knippertz¹

¹ Karlsruhe Institute of Technology, Institute of Meteorology and Climate Research – Department Troposphere Research, Karlsruhe, Germany ² Laboratoire d'Aérologie, Université de Toulouse, Centre National de la Recherche Scientifique and Université Paul Sabatier, Toulouse, France

www.kit.edu

Motivation

- Strong winds in extratropical cyclones are often associated with the **warm** and **cold** jets
- Another cause is the sting jet, which still requires more research for full understanding
- Sting-jet case studies from previous literature over the North Atlantic and British Isles mostly
- Simulations showed a strong sensitivity towards horizontal and vertical resolution
- →Do sting jets develop over continental Europe?
 →What is the impact of topography? (orography, land surface)
 →Are there benefits of running models at km-scale resolution?

What is a sting jet?

"[...] coherent air flow that descends from mid-levels inside the cloud head into the frontal-fracture region of a Shapiro-Keyser cyclone over a period of a few hours leading to a distinct region of nearsurface stronger winds."

Clark and Gray (2018)

Case study: windstorm "Egon"

Recorded gusts up to ~150 km/h on 12-13 January 2017

- Explosive cyclogenesis over English Channel (28 hPa in 15 h)
- Insured damage in Germany and France ~275 M€ (www.perils.org)

Model simulations using ICON-LAM

Time period: 00 UTC 12-14 January 2017 (48 h)
 Initial and lateral boundary conditions ICON ∆t = 3 h
 REF: dx = 3.3 km, convection parametrisation turned on

Sensitivity to horizontal resolution
 MIDRES: 6.5 km, convection parametrisation turned on
 HIRES: 1.6 km, convection parametrisation turned off
 NOPARAM: 3.3 km, convection parametrisation turned off

Impact of surface properties
 FLAT: deleted orography
 SEA: FLAT + land replaced by sea
 SST: SEA + warmer sea

Cyclone evolution in simulations

Did Egon involve a sting jet?

Lagrangian trajectories using LAGRANTO tool

(Wernli & Davies, 1997; Sprenger & Wernli, 2015)

Backward (12-15 h) and forward trajectories (3-6 h) starting from time and location of max 850 hPa wind
 Criteria for sting jet: v > 37 m s⁻¹ and ∆p > 150 hPa in 8 h
 Criteria for cold jet: v > 37 m s⁻¹ and p > 800 hPa

Mesoscale instabilities

■ Part I: conditional symmetric instability (CSI) appears to trigger descent

Part II: symmetric (SI) / inertial instability (II) contribute during descent

■ Part III: conditional instability (CI) may support BL mixing of strong winds

Sensitivity to model resolution

SJ trajectories found in all simulations

- 292 in **REF** (dx=3.3km, param. convection)
- 258 in MIDRES (dx=6.5km, param. convection)

101 in HIRES (dx=1.6km, explicit convection)

- **35** in **NOPARAM** (dx=3.3km, explicit convection)
- CSI in all simulations: **HIRES**>**REF**>**MIDRES**
- Also impact on descent & evaporative cooling
- 🗖 Also sensitive to SJ criteria & output frequency 🖉
- → Robust SJ and CSI but uncertainty in numbers

8th European Windstorm Workshop

Moderate impact on SJ dynamics

(a)

path

Sting jet present in all simulations

FLAT and **SEA** similar to **REF**

Different evolution in SST

(b)

path

Dramatic impact on gust footprint REF FLAT 3 km) REF FLAT removed orography \rightarrow no signature of mountains SEA SST SEA SST removed land warmer sea \rightarrow reduced friction \rightarrow increased mixing 31 35 39 19 23 27 43 15 Gust speed in m s⁻¹

Conclusions

Windstorm Egon 12-13 January 2017 over continental Europe

- ICON-LAM simulations satisfactorily reproduce cyclone dynamics
- Lagrangian trajectories confirm presence of sting jet
 - \rightarrow Contribution of **mesoscale instabilities** consistent with previous cases
 - → Evaporative cooling prevents drying, stronger than in previous cases
- Sensitivity tests to horizontal resolution (dx=1.6-6.5 km) and convection param.
 - → Weak impact on cyclone dynamics but strong impact on SJ characteristics
- Sensitivity tests to surface properties (orography, land/sea, SST)
 - → Each result in **deeper cyclone and stronger gusts** but mixed impact on SJ

Eisenstein, L., Pantillon, F. and Knippertz, P. (2019): *Dynamics of sting-jet storm "Egon" over continental Europe: impact of surface properties and model resolution.* **Q. J. R. Meteorol. Soc**. DOI: 10.1002/qj.3666